Cooking oil fumes (COFs) from cooking with hot oil may contribute to the pathogenesis of lung cancer. Since 2021, occupational lung cancer for individual cafeteria workers has been recognized in South Korea. In this study, we aimed to identify the distribution of lung-imaging reporting and data system (Lung-RADS) among cafeteria workers and to determine factors related to Lung-RADS distribution.
We included 203 female participants who underwent low-dose computed tomography (LDCT) screening at a university hospital and examined the following variables: age, smoking status, second-hand smoke, height, weight, and years of service, mask use, cooking time, heat source, and ventilation. We divided all participants into culinary and non-culinary workers. Binomial logistic regression was conducted to determine the risk factors on LDCT of Category ≥ 3, separately for the overall group and the culinary group.
In this study, Lung-RADS-positive occurred in 17 (8.4%) individuals, all of whom were culinary workers. Binary logistic regression analyses were performed and no variables were found to have a significant impact on Lung-RADS results. In the subgroup analysis, the Lung-RADS-positive, and -negative groups differed only in ventilation. Binary logistic regression showed that the adjusted odds ratio (aOR) of the Lung-RADS-positive group for inappropriate ventilation at the workplace was 14.89 (95% confidence interval [CI]: 3.296–67.231) compared to appropriate ventilation as the reference, and the aOR for electric appliances at home was 4.59 (95% CI: 1.061–19.890) using liquid fuel as the reference.
The rate of Lung-RADS-positive was significantly higher among culinary workers who performed actual cooking tasks than among nonculinary workers. In addition, appropriate ventilation at the workplace made the LDCT results differ. More research is needed to identify factors that might influence LDCT findings among culinary workers, including those in other occupations.
Citations
Recently, lung cancer screenings based on age and smoking history using low-dose computed tomography (LDCT) have begun in Korea. This study aimed to evaluate the distribution of lung imaging reporting and data system (Lung-RADS) categories in shipyard workers exposed to lung carcinogens such as nickel, chromium, and welding fumes according to job type, to provide basic data regarding indications for LDCT in shipyard workers.
This study included 6,326 workers from a single shipyard, who underwent health examinations with LDCT between January 2010 and December 2018. Data on age, smoking status and history, medical history, and job type were investigated. The participants were categorized into high-exposure, low-exposure, and non-exposure job groups based on the estimated exposure level of nickel, chromium, and welding fumes according to job type. Cox proportional hazard regression analysis was used to determine the difference between exposure groups in Lung-RADS category ≥ 3 (3, 4A, and 4B).
Out of all participants, 97 (1.5%) participants were classified into Lung-RADS category ≥ 3 and 7 (0.1%) participants were confirmed as lung cancer. The positive predictive value (ratio of diagnosed lung cancer cases to Lung-RADS category ≥ 3) was 7.2%. The hazard ratio (HR) of Lung-RADS category ≥ 3 was 1.451 (95% confidence interval [CI]: 0.911–2.309) in low-exposure and 1.692 (95% CI: 1.007–2.843) in high-exposure job group. Adjusting for age and pack-years, the HR was statistically significant only in the high-exposure job group (HR: 1.689; 95% CI: 1.004–2.841).
Based on LDCT and Lung-RADS, among male shipyard workers, Lung-RADS category ≥ 3 were significantly higher in the high-exposure job group. Their HR tended to be > 1.0 and was statistically significant in the high-exposure job group. Additional studies should be conducted to establish more elaborate LDCT indications for occupational health examination.
Citations